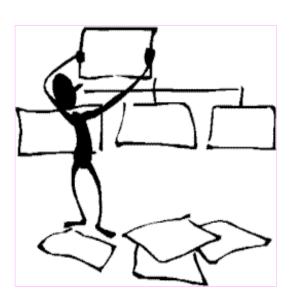


Physique-Chimie

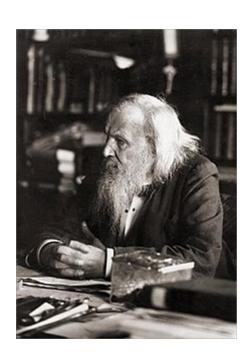
Module No 04

La classification périodique des éléments chimiques

Objectifs pédagogiques


 Découvrir la classification périodique des éléments chimiques

Plan


- Mendeleïev
- Les atomes isotopes
- La classification
- · Les familles d'éléments chimiques

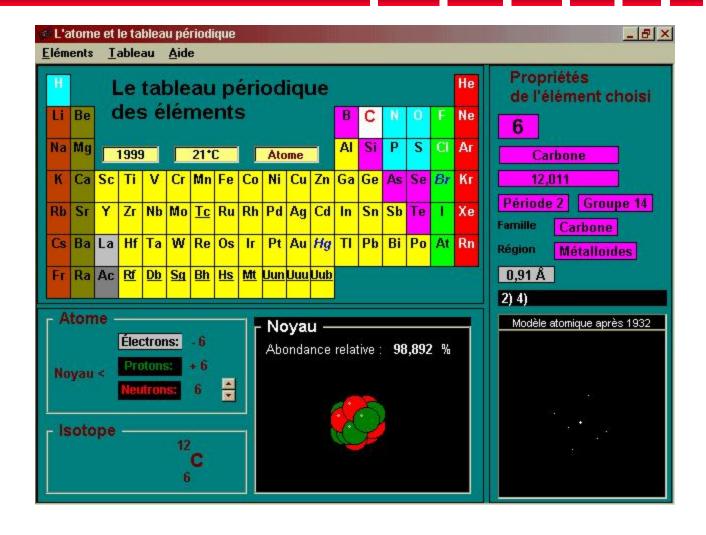
Mendeleev

- A la fin du XIXe siècle, un savant russe, Mendeleïev, entreprend de classer les éléments chimiques à cette époque.
- Le 6 mars 1894, il présente à la société russe de chimie un rapport intitulé « La dépendance entre les propriétés des masses atomiques des éléments » :
 - Les éléments, lorsqu'ils sont disposés selon leur masse atomique, montrent une périodicité apparente de leurs propriétés.
 - · L'arrangement des éléments, ou des groupes d'éléments dans l'ordre de leurs masses atomiques, correspond à leurs propriétés chimiques distinctives.
 - L'importance de la masse atomique détermine le caractère de l'élément, de même que l'importance de la molécule détermine le caractère d'un corps composé.
 - Certaines propriétés caractéristiques des éléments peuvent être prévues à partir de leur masse atomique.

Atomes isotopes

- Sont qualifiés d'« isotopes » les différents types d'atomes d'un même élément qui se distinguent seulement par leur nombre de neutrons.
- Les isotopes d'un même élément gardent en effet le même nombre de protons et d'électrons.
- Ils possèdent aussi les mêmes propriétés chimiques.
- Les isotopes d'un même élément présentent cependant des propriétés physiques différentes, notamment en ce qui concerne leur radioactivité.
- Les isotopes peuvent exister à l'état naturel.
- C'est le cas du carbone 12 et du carbone 14.
- Ils peuvent aussi être synthétisés en laboratoire ou produits par l'industrie.
- L'uranium compte ainsi 17 isotopes.

Classement des éléments (Mendeleev)



1	H H																	He l
	Ilydrogène	ПА											ША	IVA	VA	VIA	VIIA	Helium
2	Lithium	Be											B none	6 Carbone	N Auste	8 O Choyagiras	Fluor	Ne
3	Na Sodum	Mg Magnésian	IIIB	IVB	VB	VIB	VIIB		VIIIB		IΒ	IIB	Al Al	Si Silicium	P P	16 S	Cl Cl	Ar
4	19 K	Ca Calcium	SC Scandum	Ti	Variadum	Cr	25 Mn Manganèse	Fe Fer	Co Cotult	28 Ni Nicket	Cu Cutvre	Zn	Gallium	Ge Gemanium	As As	Se Seléctura	35 Br	36 Kr
5	Rb Rutsidum	38 Sr strontium	39 Y	Zr	Nb	Mo Molytzlirae	Tc	Rut Rut But before turn	Rh Rh	Pd Polladum	Ag Ag	Cadmium	49 In	Sn fizain	Sb Actimotre	Te	53 I	Xe
6	Cs Cs	Ba	*	Hf	Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	Au °	Hg Mercure	Tl Thelium	Pb	Bi Bi	Polosium	85 At	Rn Radon
7	87 Fr	Radum	**	104 Rf	Db	106 Sg Seuborgium	Bh	108 Hs	109 Mt	Ds	Rg Ricresportium	112 Uub	113 Uut	114 Uuq	115 Uup		117 Uus	118 Uuo
	* lanthanides			57 La Larthure	58 Ce	59 Pr Prawlodyme	60 Nd	Promethium	62 Sm Samarium	63 Eu	64 Gd Gadolinium	Tb	Dy	Ho	68 Er	69 Tm Thalian	70 Yb	71 Lu Luréctura
	** actinides			Ac Actinium	90 Th	Pa Protectivism	92 U	93 Np	94 Pu	95 Am Américium	96 Cm	97 Bk	98 Cf Californium	99 Es	Fermium	Merskilévium	No Nobelium	Lr

Structure de l'atome – élément chimique

Modèle de l'atome

Avons-nous atteint nos objectifs?

- Découvrir la classification périodique des éléments chimiques
- Elle représente tous les éléments chimiques, ordonnés par numéro atomique croissant et organisés en fonction de leur configuration électronique, laquelle définit leurs propriétés chimiques.

